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J ,  Phys: Condens. Matter 4 (1992) Ii!55-L259. Printed in h e  UK 

LETTER TO THE EDITOR 

Direct simulation of phase equilibria of chain molecules 

G C A M Mooijt, D Frenkelt and B Smitt: 
t M M  Institute For Atomic and Molecular Physic$ Ktuislaan 407, 1098 SJ Amsterdam, 
?he Netherlands 
$ Koninltlijke/Shell-Lboraforium, PO Box 3023, 1003 AA Amsterdam, ?he Netherlands 

Rgeived 4 March 1997. 

Abstract We show how U) combine a novel Monte Carlo scheme to  sample mnfor- 
mations of chain molecules with the Gibta-ensemble method to simulate Auid-Euid 
phase coexistence. ?lis approach allows us to “pule liquid-vapour equilibria in chain 
molecules containing 8.15 monomers. As an aample,  we report the fmt Simulation of 
the vapour-liquid mexislence N N e  of an eight-bead Lennard-Jones molecule. 

One of the most important applications of computer simulations of classical flu- 
ids is the direct calculation of phase diagrams. In particular, having the facility to 
compute the fluid-fluid coexistence curve of an arbitrary model for an atomic or 
molecular fluid, or fluid mixture, is of considerable practical importance. However, 
until recently, the numerical study of liquid-vapour phase equilibria was an ardu- 
ous task, even for the simplest (i.e. atomic) systems. This state of affairs changed 
completely with the introduction hy Panagiotopoulos and co-workers of the so-called 
Gibbs-ensemble Monte Carlo (GEMC) scheme [l-31. Using this method, fluid-fluid 
equilibria in atomic, or simple molecular, systems can be simulated directly using 
a relatively small number of particles. In fact, since the introduction of the GEMC 
method, a very large number of numerical studies of liquid-vapour phase equilibria 
have been reported. However, these simulations are all limited to model systems 

, containing atoms or small molecules. The reason for this becomes clear if we re- 
call that one of the steps in the GEMC scheme involves the random insertion of 
particles in a fluid. Using the conventional (random) sampling schemes, successful 
insertions can only be achieved for small molecules. At typical liquid densities the 
probability of the successful insertion of a monomer is of the order of 0.5%, the 
probability of inserting a chain of eight of these monomers is less than Such 
a low probability of insertion would necessitate billions of years of computer t h e  to 
compute a coexistence curve. In this letter, we present an extension of the GEMC 
method that makes it possible to perform direct simulations of phase equilibria in- 
volving chain molecules. This is of considerable interest for two reasons: first of all, 
from a fundamental p i n t  of view, there is a scarcity of ‘hard’ data that allow us to 
test theories of liquid-vapour phase coexistence in ply-atomic fluids. Secondly, the 
practical importance of numerical simulations of phase equilibria involving (mixtures 
of) truly poly-atomic molecules far transcends that of the study of phase equilibria 
involving atoms or small molecules. In what follows, we briefly recall the essentials 
of the GEMC method. Next, we sketch our extensions to this scheme, which make it 
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possible to study phase equilibria involving flexible, poly-atomic molecules. Rnally, as 
an example, we report the observation of liquid-vapour phase separation in a system 
of ‘Lennard-Jones’chain molecules of eight monomeric units. 

In GEMc simulations, one studies the equilibrium behaviour of a system of N 
particles, with a total volume V at a temperature T. This system is divided into 
two @eriodic) sub-systems, which can exchange both volume and particles. When the 
system as a whole is at a state point in the two-phase region, the state of lowest free 
energy is one in which one box contains bulk vapour and the other the bulk liquid. 
Since the two boxes are not in direct contact, this equilibrium b achieved without the 
presence of an interlace. It is precisely the absence of such an interface that makes it 
possible to obtain information about coexistence between bulk phases &om a single 
simulation. 

In a GEMC simulation, three types of trial move can be performed: 
(i) Random displacement of a partick inside either box, 
(ii) random change of the volume of both boxes in such a way that the total 

(E) exchange of particles between the two boxes. 
It is the last step that has a prohibitively low acceptance for chain molecules, since 

a random insertion of a poly-atomic molecule in a fluid will almost always result in 
an overlap with one of the other chains. Below, we describe a novel algorithm that 
allows us to bias the insertion of chains in such a way that the ‘holes’ in the system are 
found. This method of insertion would bias the simulations if the ordinaly acceptance 
rules were used. Here we show that the correct distribution of configurations can be 
sampled if the acceptance rule for this step is modified. Our approach is based on 
a ‘configurational-bias’ Monte Carlo scheme for continuously deformable molecules 
which we described in an earlier publication [4]. 

Consider a trial move to remove a molecule from one box (say, 1) and imert 
it in the other box (2). TO achieve this, we first insert a chain molecule in box 5 
using a stepwise method. First, we attempt to insert a single monomer in box 2 
Next, k random trial segments are generated, such that the next monomeric unit 
is located somewhere on a spherical shell around the first monomer. For each of 
these trial segments, the potential energy due to interaction with the other particles 
in the system is calculated and one of the directions, say direction i, is selected with 
a probability given by 

volume remains constant, and 

where P = l / k B T  and u(j) is the energy of a j t h  trial direction and n labels the 
position of the segment in the chain. The subscript (in this case 2) indicates the box 
in which these quantities are calculated. In addition, we compute a weight factor 

w2(n) = ( i . e x p [ - ~ u ~ ( j ) l ) ~ ~ ( n  - 1). (2) 
j = 1  

W2(0), the weight factor for the monomer, is simply the Boltzmann factor asso- 
ciated with the random insertion of a monomer. At the same time we calculate a 
corresponding weight factor W,( n) for the chain that we chose to remove from box 1 

(3) 
1=1 
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where the summation is over the same set of trial directions as in box 2 with the 
restriction that the orientation selected in box 2 is replaced by the actual orientation 
of the chain in box 1 of that particular segment This procedure is repeated until the 
chain has the desired length (n = 1). 

In the original scheme described in [4], the overall acceptance probability of such 
a trial move would be min(l,W,(l)/W,(l)). Using this method, it is possible to 
study chain molecules of 10-30 beads in a moderately dense liquid [4, 3. 

In order to use this method to move molecules from one box to the other in 
a CEMC simulation, we should use a slightly different expression for the acceptance 
probability of trial moves. lb this end, we impose detailed balance on our Monte 
Carlo procedure. This implies that, in equilibrium, the rate at which particles are 
moved from box 1 to 2 equals the reverse rate: 

N(l)P(  112)acc(112) = N(2)P(211)acc(211) (4) 

where N ( l )  is statistical weight of the initial configuration with n, chains in box 1 
with volume VI, and n2 V - V,. 
P(112) is the probability that, starting from the current configuration, a configuration 
2 is generated with n, - 1 particles in box 1 and nz + 1 in box 2 acc( 112) denotes 
the probability this trial move is accepted. The ratio OP the statistical weights N (  1) 
and N ( 2 ) ,  is given by 

N - n1 particles in box 2 with volume V, 

(5) 
N(1) - V;'V;l2(n, - l ) ! (n ,+  l)!exp[-PU(l)] -- 
N ( 2 )  v;'-'v,n'+' (nl)!(nz)!expl-PU(2)1 

where U( 1) ( U ( 2 ) )  is the total potential energy of configuration l(2). 
Substituting these equations into (4), using equations (1)-(3), we find that the 

following acceptance rule for the exchange step will satisfy the detailed balance con- 
dition 

This demonstrates that we can use the biased insertion and still sample the correct 
distribution of configurations provided we use the acceptance rules given by (6). At 
this stage, it is worthwhile pointing out that, with trivial extensions, the above scheme 
can be applied to mixtures of chain molecules. 

As an illustration of the scheme described above, we consider a model system 
containing ux) chain molecules consisting of eight 'monomers' connected by bonds of 
a fixed length U. The bonds are allowed to mtate freely with respect to each other. 
The monomer-monomer interaction is modelled by a LennardJones potential that is 
cut off at a radius R, = 2.50 and shifted: 

Figure 1 shows the main result of our CEMC simulation, namely the liquid-vapour 
coexistence cuwe of this model system. In table 1, we have listed the densities of the 
coexisting phases as a function of temperature. In order to estimate the location of 
the liquidvapour critical point, we have assumed the law of rectilinear diameters [6]. 



l.2.58 Letter to the Editor 

F i p r e  L tiquid-vapour mexislence cutye of a system of ZOO chains of eight Lennard- 
Jones monomen as measured in our GEMC simulalions. T’ = kT/t  and p’ = p / a 3 .  
Our eslimale 01 the crilical point is indicaled by a black dot. 

Indeed, we find that, in the temperature range studied, the means of the liquid and 
the gas densities fall  on a straight line. Moreover, we assumed that, in the Vicinity of 
the critical p in t ,  the shape of the coexistence curve is given by the scaling form 

PI - P, = B(T- T,)’ (s) 

with the critical exponent p = 0.32t. Combining these two fits we arrive at an 
estimate of the critical point T, = 2.07 and p, = 0.22. This point i$ indicated by the 
black dot in figure 1. The phase diagram of ulom with an interaction potential given 
by equation (7) has been computed by Smit [7]. Comparing the two phase diagrams, 
one finds that the critical temperature for the chains is almost twice as high as for 
the atomic fluid and that the critical density is somewhat lower. Such behaviour is 
in qualitative agreement with the predictions of the Flory-Huggins theory and is also 
found experimentally [SI. A more detailed analysis of our simulation results will be 
reported elsewhere [9]. 

In summary, the technique described in this letter allows us to study the liquid- 
vapour phase coexistence of flexible, poly-atomic molecules. The same technique can 
also be used to study the phase behaviour of mixtures of different chain molecules, 
or chain molecules in a solvent. Although the results presented in this letter were 
limited to a chain consisting of eight monomeric units, preliminary results indicated 
that the method should work for chains with 8-15 beads. In fact, as the critical density 
for liquid-vapour phase separation is expected to decrease as i-’I2 with increasing 
chain length, it seems likely that the GEMC technique may be used to estimate the 
critical point, even for chains that are rather longer than 15 units. We sltBuld stress 
that a Lennard-Jones chain of I ‘monomers’ separated by bonds of length U is, in 
fact, appreciably longer than, say, a hydrocarbon molecule with the same number 

t It we use the classical exponent 6 = 0.5, iather than 6 = 0.32, our estimale for the ailical lemperalurc 
increases ty no more than 1%. 
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lhbk 1. 'Emperature dependence of the densities of the m i s t i n g  liquid ( p , )  and 
vapour (&) phases of a system of UM eightmonomer Lennard-Jones chain molecules. 
Xmperature and densities are m n d u n d  units. T* = k T j r  and p' = p i c 3 .  'ne 
m i  in the densities is given by the rubscriptr. e.g. 0.0335 means 0.033 f 0.005. 

1.887 0.0335 0.521s 
1.923 0.031. 0.5065 
1.980 0.0584 0.4535 
2.003 0.061 0.421 
ZMO 0.081 0.m1 
2041 0.101 o.401 
2062 0.141 0.331 

of monomers. For realistic models, the monomer-monomer distance is considerably 
less than the diameter of the monomers. We therefore expect that the technique 
described in this letter will allow us to study the phase behaviour of alkanes with up 
to 25 carbon atoms. 

The investigations reported in this paper were supported in part by 'Scheikundig On- 
denoek Nederland' (SON) with financial aid from NWO ("ederlandse Organisatie 
voor Wetenschappelijk Onderzoek'). The work of the FOM Institute is part of the 
research program of FOM and is supported by NWO. 
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